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1. Introduction

Determining the low energy gauge theory on a stack of D-branes probing a Calabi-Yau

singularity is an important, interesting, and in general unsolved problem. These D-brane

constructions can be used to build flux vacua in string theory, and they play an impor-

tant role in the AdS/CFT correspondence, where they yield a geometric understanding of

strongly coupled gauge theories. While much progress has been made in understanding

orbifold, toric, and other simple Calabi-Yau singularities, the general case remains elusive.

Two of the most powerful techniques for unearthing these gauge theories are the

brane tiling method pioneered by [1 – 3] and exceptional collections first mentioned in the

AdS/CFT context in [4]. The relation between these two methods has up to this point

remained obscure. In this paper, we show how to translate one language into the other.

– 1 –



J
H
E
P
0
7
(
2
0
0
6
)
0
0
1

More specifically, we have in mind D3-branes in type IIB string theory. The ten

dimensional geometry is divided up into a Minkowski part R
3,1 which the D3-branes occupy

and a transverse Calabi-Yau threefold Y . Placing the D3-branes at a singularity of Y

produces complicated quiver gauge theories which preserve N = 1 supersymmetry.

One of the best features of the brane tiling method is the ease with which the superpo-

tential of the quiver gauge theory can be extracted. A brane tiling is a bipartite tiling of the

torus T 2, and the superpotential terms are just the nodes of this tiling with coefficient ±1

given by the coloring of the node. No other method of relating gauge theory to geometric

singularity has as yet produced such a simple way of extracting the superpotential.

For the brane tiling method to work, one starts with a toric Calabi-Yau three-fold

singularity. The toric condition means that Y possesses three U(1) isometries. There

are countably many interesting toric Calabi-Yau singularities, but the toric condition is a

substantial restriction on Y . By using brane tilings, older algorithms ([5, 6]) get vastly

simplified and reinterpreted.

For the exceptional collection method to work, one needs to be able to resolve partially

the Calabi-Yau singularity by blowing up a complex surface — the exceptional collection

lives on this surface. There are many both toric and non-toric Calabi-Yau singularities

which can be resolved in this manner. The exceptional collection method was in large part

developed to study some simple non-toric singularities, the non-toric del Pezzos [7].

While the superpotential can be extracted from an exceptional collection, the process

is more abstract and less intuitive than for the brane tiling. In the exceptional collection

case, deriving the superpotential requires working with A-infinity algebras [8, 9].

The exceptional collection method as applied to deriving quiver gauge theories rests

on relatively firm mathematical and physical foundations [10 – 14]. From the perspective

of the topological B-model, the objects in the collection can be understood as a nice basis

of D-branes and the maps between the objects as massless open strings.

The brane tiling method began as an extremely remarkable observation: the tiling

contains all the information of the quiver gauge theory, and hence proves to be a very

useful tool in its study and construction. The toric diagram of the Calabi-Yau manifold

can be easily obtained by either computing the determinant of the Kasteleyn matrix or by

determining the zig-zag paths. Recent results [15] allow for computing the tiling directly

from the toric diagram. More recently, the paper of [16] gave a physical interpretation of

the dimer model as a tiling of D6-branes in the mirror topological A-model.

By providing a translation between the brane tiling and the exceptional collection, we

put the brane tiling, along with its easy superpotential calculation, on a firmer mathemat-

ical and physical footing. Our results fall short of a general proof that the brane tiling

method is equivalent to exceptional collections for toric Calabi-Yau singularities. Instead,

we provide a well motivated conjecture of the way this map will work which we can prove

example by example. By relating the tiling to exceptional collections which are topological

B-model objects, our approach is complementary to that of [16].

In order for our translation between the brane tiling and the exceptional collection

to work, we henceforth restrict to toric Calabi-Yau threefold singularities which can be

partially resolved by blowing up a complex surface.
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In the next section, we begin by reviewing some elementary material about quivers,

quiver gauge theories, and toric geometry. Section 3 contains a review of the brane tiling

method. The principal results of the paper are contained in sections 4 and 5.

Section 4 contains a brief review of the exceptional collection method and a map from

the exceptional collection to the brane tiling. We argue that the periodic quiver which is

the dual graph of the brane tiling can be constructed from a consideration of Wilson lines.

In section 5, we proceed in the other direction, mapping the brane tiling onto an excep-

tional collection. The cornerstone of this mapping is the realization that internal perfect

matchings are in one-to-one correspondence with exceptional collections of line bundles.

2. Quivers and toric diagrams

The matter content of the quiver gauge theory is neatly summarized in the quiver graph

[17] which also generalizes the Dynkin diagrams. Each node in the quiver (see e.g. figure 1)

may carry an index, Ni, for the ith node and denotes a U(Ni) gauge group. The edges (ar-

rows) label the chiral bifundamental multiplets. These fields transform in the fundamental

representation of U(Ni) and in the anti-fundamental of U(Nj) where i and j represent the

nodes in the quiver that are the head and tail of the corresponding arrow.

To be gauge anomaly free, for each gauge group, the number of chiral fermions in the

fundamental representation must equal the number in the antifundamental representation.

This anomaly cancellation means that for a fixed node in the quiver, the number of incoming

and outgoing arrows are the same.

By deleting certain arrows in the quiver, one obtains another graph, the so-called

Beilinson quiver. In this quiver there exists an ordering of the nodes such that there

are no arrows pointing backwards (for an example see figure 2). Generically, there are

many Beilinson quivers corresponding to a given quiver. These quivers can be thought of

as subquivers that contain no oriented loops. A more precise definition can be found in

section 4.

Z

1 Y2

Y3

U1
α U2

α

Vα

1

4 3

Y

2

31 2 4

Figure 1: Quiver of dP1. The theory con-

tains four U(N) gauge groups labeled by the

nodes of the quiver. The arrows label bi-

fundamental fields transforming in the (anti–

)fundamental representation of the groups at

the endpoints.

Figure 2: dP1 Beilinson quiver.
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Figure 3: The cone for the variety. The coordinates of the spanning vectors are integers. The

endpoints are coplanar following from the Calabi-Yau condition.

We are taking a small liberty with the term Beilinson quiver. Historically, Beilinson

quiver referred only to projective space (see for example [18]). In the context of D-branes

and Calabi-Yau manifolds, that would mean placing a stack of D-branes at a singularity

where a P
2 had shrunk to zero size. The Beilinson quiver associated to P

2 is then obtained

by eliminating backward pointing arrows in the full gauge theory quiver. (These Beilinson

quivers are sometimes called Bondal quivers [19].)

In order to fully specify the Lagrangian, we need to give the superpotential as well,

which is a polynomial in gauge invariant operators. For example, for dP1 the superpoten-

tial is

W = εαβUα
1 V βY1 − εαβUα

2 Y2V
β − εαβUα

1 Y3U
β
2 Z . (2.1)

The AdS/CFT dual theory is determined by the Calabi-Yau threefold Y . For the

purpose of this paper, we don’t need explicit metrics. Instead, we will use toric geometry

([20, 21]) to treat the topology of these singular manifolds. To use toric methods, we restrict

the class of possible spaces to toric ones, i.e. the isometry group of Y contains a 3-torus.

The variety can be defined by a strongly convex rational polyhedral cone σ spanned by a

set of vectors ({vr}) on the integer lattice N (figure 3).

The lattice is three dimensional so that we obtain a (complex) 3d space. Let M =

Hom(N, Z) be the dual lattice with pairing denoted by 〈·, ·〉. The dual cone σv is the set of

vectors that are nonnegative on σ. The lattice points in σv determine a finitely generated

commutative semigroup:

Sσ = σv ∩ M = {u ∈ M : 〈u, v〉 ≥ 0 for all v ∈ σ} . (2.2)

The corresponding commutative C[Sσ] algebra defines the Uσ variety by its spectrum

Uσ = Spec(C[Sσ]) . (2.3)

The so-called moment map for the torus action gives Y as a Lagrangian T 3 fibration over

the dual cone. For details of this map the reader should refer to [21].

For each spanning vector vr there is a corresponding Dr (Weil) divisor in the toric

variety. Principal divisors are of the form

∑

r

〈m, vr〉Dr , (2.4)
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Figure 4: The toric diagram for L1,7,3 which is part of the recently discovered series of Labc metrics

([24, 25]). The dual quiver theories have been constructed in [3, 26, 27].

for m ∈ M . The Calabi-Yau condition states that c1(Y ) = 0, i.e. the canonical class is

trivial

K = −
∑

r

Dr = −
∑

i

〈m, vr〉Dr . (2.5)

The last equality implies that the endpoints of the ({vr}) vectors are coplanar, so with

an appropriate SL(3, Z) transformation a convex integer polygon in two dimensions can

be obtained (see e.g. figure 4). We will refer to this polygon as the toric diagram of the

singularity [22, 23, 3]. Weil divisors can be specified as integer functions over the external

lattice points of the toric diagram. Principal divisors are simply linear functions; the

canonical class is a constant function.

3. Brane tilings

3.1 Tilings

In this section we give a short introduction to brane tilings [2]. Brane tilings (a.k.a. dimer

graphs) have arisen in two string theory contexts:

Quiver gauge theories that are obtained by placing D3-branes at the tip of

a non-compact toric Calabi-Yau cone [1, 2, 15, 16], and

Topological string theory, more specifically, the partition function of the

topological A-model defined on the same Calabi-Yau cone [28, 29].

In the following, we describe tilings from the first point of view. The brane tiling is a

generalization of brane boxes [30, 31] and brane diamonds [32]. The tiling graph encodes

the quiver and tree-level superpotential information, thus fully specifying the 4d N = 1

quiver theory Lagrangian. The toric diagram of the corresponding Calabi-Yau manifold can

be easily computed by means of the Fast Forward Algorithm [2]. On the other hand, given

the toric diagram, the tiling is simply obtained by the Fast Inverse Algorithm [15, 16]. The

equivalence of the Forward and the Fast Forward Algorithms has recently been established

in [33].

The brane tiling is a periodic bipartite graph1 on the plane. Equivalently, one may

draw it on the surface of a 2-torus. The faces label gauge groups, the edges are chiral

1A planar graph is bipartite if the nodes can be colored in black and white, such that edges only connect

black nodes to white nodes and vice versa.
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1

2

2

2

3

3

3

Figure 5: The P2 periodic quiver. The nodes denote U(N) gauge groups; the directed edges

between them are bifundamental fields. The plaquettes of the quiver graph are terms in the super-

potential. This example has three gauge groups, labeled by numbers. Identifying nodes with the

same labels (i.e. “compactifying” the periodic quiver) yields the usual quiver diagram.

1

23

2

2 2

2

3

1

1

3

3

1

3

1

3

3

Figure 6: P2 brane tiling and quiver. The unit cell of the lattice is shown in red. The theory

has three gauge groups (faces in the tiling) and six cubic terms in the superpotential (valence three

nodes of the tiling).

bifundamental fields, and the nodes are terms in the superpotential. The dual graph of

the brane tiling is the periodic quiver. Roughly speaking, the periodic quiver is the quiver

drawn on a 2-torus such that the plaquettes give the terms in the superpotential. Figure 5

shows an example of a periodic quiver for the well known case of C
3/Z3 (otherwise known

as the complex cone over P
2). Nodes carry three different labels and nodes with the same

label are identified. The corresponding tiling is shown in figure 6.

Brane tiling Periodic quiver Gauge theory

faces nodes U(N) gauge groups

edges edges bifundamental fields

nodes plaquettes superpotential terms

The tiling provides us with a simple geometrical unification of quiver and superpoten-

tial data. The bipartite property of the tiling implies that each face in the brane tiling

– 6 –
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(1)

2

1 1

1

2 2

2

4

3

4

3

3 3

4

3

4

3X42

X34
(1)

X23
(1)

X12

X13

X34
(2)

X23
(2)

X34
(3)

X41
(2) X411

Figure 7: Brane tiling for dP1. The fundamental cell of the periodic graph is shown in red, the

fields corresponding to the edges are shown in blue. The numbers label the faces that correspond

to the groups (nodes) in the dual quiver graph.

has an even number of edges and that the dual quiver has an equal number of incoming

and outgoing arrows for each gauge group. As discussed in section 2, equal numbers of

incoming and outgoing arrows are required by gauge anomaly cancellation. To each term

in the superpotential there is a plaquette in the periodic quiver and a black or white node

in the tiling. The color of the node in the tiling tells us the sign of the term. Since a

bifundamental field joins a white and black node in the tiling, we conclude that each bi-

fundamental field appears exactly twice in the superpotential, once with a plus and once

with a minus sign.

As a simple example, figure 6 shows the brane tiling and the quiver for P
2. We see that

the brane tiling contains three faces; these correspond to the three gauge groups (nodes)

in the quiver. The nine edges in the tiling are the bifundamental fields. The six nodes of

the tiling immediately give the following superpotential:

W = X
(1)
12 X

(2)
23 X

(3)
31 + X

(2)
12 X

(3)
23 X

(1)
31 + X

(3)
12 X

(1)
23 X

(2)
31

−X
(3)
12 X

(2)
23 X

(1)
31 − X

(2)
12 X

(1)
23 X

(3)
31 − X

(1)
12 X

(3)
23 X

(2)
31 . (3.1)

Here X
(k)
ij denotes the bifundamentals going from gauge group i to j, and k labels the

different fields.

Another example is the del Pezzo 1 (dP1) theory (figure 7). The tiling contains four

faces which label the four gauge groups.

We have already seen the corresponding quiver (figure 1). The tiling gives the super-

potential:

W = X
(1)
23 X

(1)
34 X42 + X12X

(2)
23 X

(3)
34 X

(1)
41 + X13X

(2)
34 X

(2)
41

−X13X
(1)
34 X

(1)
41 − X12X

(1)
23 X

(3)
34 X

(2)
41 − X

(2)
23 X

(2)
34 X42 (3.2)

which, after making the relabeling {X42 = Y2, X12 = Z, X13 = Y1, X
(α)
34 = V (α), X

(3)
34 =

Y3, X
(α)
23 = U

(2−α)
2 , X

(α)
41 = U

(2−α)
1 }, is the same as (2.1).
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(0,0)

(0,1) (1,1)

(0,−1)

(−1,0)

Figure 8: Toric diagram for dP1. The multiplicity of the internal point is four.

One can compute the toric diagram related to the moduli space of this theory by means

of the Kasteleyn matrix (3.3). The Kasteleyn matrix is the adjacency matrix of the tiling

graph. More precisely, the rows are labeled by the black nodes, the columns by the white

nodes. The corresponding entry is zero if the two nodes are not connected; otherwise it is

the appropriate weight of the connecting edge. For details of building the Kasteleyn matrix

the reader should refer to [2, 1, 34, 35].

K =







z−1 1 w−1

1 1 − z z

w 1 1






(3.3)

The determinant of the Kasteleyn matrix gives the spectral curve

P (w, z) ≡ det K = −4 + w−1 + z−1 + z + wz . (3.4)

The P (w, z) = xy equation and its deformations describe the mirror Calabi-Yau as a

fibration. The Newton polygon of this polynomial gives the toric diagram of the threefold

(figure 8).2

3.2 Perfect matchings

A perfect matching is a subgraph of the tiling that contains all the nodes and each node has

valence one [35, 34]. This means that a perfect matching is a set of dimers (edges in the

brane tiling) that are separated, i.e. they don’t touch each other; furthermore the dimers

cover all the nodes. Therefore, we have altogether V/2 dimers in each perfect matching,

where V denotes the number of nodes in the tiling. The eight perfect matchings for dP1

are shown in figure 9.

It can be easily checked that if we superimpose two perfect matchings A and B (denoted

A+B), then we obtain loops (and separate edges which we neglect). Fix a reference perfect

matching R. For each matching Ai we can define an integer height function. The loops of

R + Ai can be regarded as “contours”. Crossing a loop at an edge where the black node is

on the left hand side means a change in the height function by ±1. The sign depends on

whether the edge was part of the reference matching (−1) or that of Ai (+1). An example

is shown in figure 10 which is the height function for dP1 for the last matching in figure 9.

The shading indicates the height. The contours are made of blue and green edges that are

contained in the last matching in the list and in the reference matching (4th matching in

the list), respectively.

2The toric diagram can also be computed by means of the zig-zag paths of the tiling; for details, see [15].
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4

3

4

3

4

3

4

3

1

2

1

2

4

3

4

3

4

3

4

3

(0,0) (0,0)

(0,0)

(0,0)

(−1,0)(0,−1)

(1,1)

(0,1)

Figure 9: The eight periodic perfect matchings of dP1. The green edges are contained in the

matching. The dashed lines are the edges left in the tiling. The (s, t) numbers are the corresponding

points in the toric diagram (see figure 8).

The above defined height function is a well-defined function on the infinite periodic

tiling faces, but on the torus it has monodromy that is described by two integers: (s, t).3

3(s, t) denotes the change in the height as we go along the two non-trivial cycles of the torus of the brane

tiling. This pair is also known as the slope of the height function.
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0
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1

Figure 10: The height function for the last perfect matching of dP1. The edges in the matching

are colored blue. The green reference matching was chosen to be the 4th perfect matching from

figure 9. The two matchings on top of each other result in horizontal loops where the height function

increases by one. The monodromy of the height function is (0, 1) and there is a corresponding lattice

point in the toric diagram in figure 8.

For our example this pair was (0, 1). Such pairs are assigned to every perfect matching with

respect to a reference matching. These pairs are coordinates of points in the toric diagram;

in fact, the toric diagram is the (convex) set of all such points. The reference matching

has (0, 0) coordinates and the change in the reference matching merely translates the toric

diagram. An SL(2, Z) transformed fundamental cell results in an SL(2, Z) transformed toric

diagram. Perfect matchings that reside at an internal lattice point in the toric diagram are

called internal matchings. The remaining matchings at the external points are the external

matchings with corresponding Weil divisors as discussed in section 2.

3.3 Zig-zag and rhombus paths

In [15] a special path was defined which turns out to be also useful here. A zig-zag path is a

path on the edges of the tiling which turns maximally left at a node, then maximally right

at the next node, then again left, and so on [34]. An example is presented in figure 11.

In [15] it was an observation that these loops on the torus of the tiling are in one-to-one

correspondence with the edges of the toric diagram polygon. In fact, their homology classes

give the outward pointing normal vectors of the edges, the so-called external pq-legs. This

follows from the results of section 7.1 in [16].

As discussed at length in [15], one can associate to the brane tiling another graph,

which contains the edges that connect the face centers to the tiling nodes. We call this

graph the rhombus lattice.4 The zig-zags in the tiling are “straight” rhombus paths in the

rhombus lattice (figure 12).

There are always two zig-zag paths going through each tiling edge. In the rhombus

lattice this translates to the fact that the bifundamentals arise from the intersection of

two rhombus paths. These paths have been analyzed in considerable detail in [16] where

4The faces of this new graph are indeed rhombi if the original brane tiling is isoradially embedded in

the plane. For details see [15].
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3

(0,1)+(1,1)

Figure 11: Zig-zag path in the dP1 brane tiling. The path is the superposition of the (0, 1) and

(1, 1) neighboring external perfect matchings.

1
2 3

4
5 6 7

8
9 10

Figure 12: (i) Rhombus path in the rhombus lattice. (ii) Equivalent zig-zag path in the brane

tiling. The blue line shows the rhombus loop schematically. The edges which are crossed by the blue

line in (i) are all parallel. Their orientation can be described by an angle, the so-called rhombus

loop angle.

the zig-zags were related to cycles that are wrapped by D6-branes in the mirror Calabi-

Yau. Further developments in brane tilings which will not be discussed here can be found

in [36, 37].

4. Exceptional collections

Exceptional collections provide a powerful tool for deriving the low energy gauge theory

description of a stack of D-branes probing a Calabi-Yau singularity. Given a Calabi-Yau

cone Y , a stack of D-branes at the singularity will fragment into a set of fractional branes

from which the gauge theory is easily deduced. These fractional branes are best described

as objects in Db(Y ), the derived category of coherent sheaves on Y . Exceptional collections

provide a way of finding a good set of fractional branes and avoiding a direct confrontation

with Db(Y ).5

5For earlier physics applications of exceptional collections to Landau Ginzburg models, see [38 – 42].
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If Y can be partially resolved by blowing up a possibly singular complex surface V ,

instead of looking for fractional branes on Y , we look for an exceptional collection of sheaves

on V . There is then a simple procedure for converting this collection into a good set of

fractional branes [10, 11], and in fact the gauge theory can often be deduced directly from

the exceptional collection.

An exceptional collection of sheaves E = (E1, E2, . . . , En) is an ordered set of sheaves

which satisfy the following special properties:

1. Each Ei is exceptional: Extq(Ei, Ei) = 0 for q > 0 and Ext0(Ei, Ei) = Hom(Ei, Ei) =

C.

2. Extq(Ei, Ej) = 0 for i > j and ∀q.

In these notes, we will be most interested in the case where the collection is strongly

exceptional, in which case Extq(Ei, Ej) = 0 for i < j and q > 0. For smooth toric surfaces,

the collection must be strong to generate a physical quiver gauge theory [10, 11], and the

same is true for singular surfaces as well.6

For the most part, our sheaves can be thought of as line bundles, and line bundles are

easy to describe in a toric context.7 For each ray vr in the fan, there is a toric Weil divisor

Dr. The line bundles can then be expressed as O (
∑

r arDr) for ar ∈ Z. One very special

line bundle is the anti-canonical bundle:

O(−K) = O

(

∑

r

Dr

)

. (4.1)

As we said earlier, the Calabi-Yau cone is the total space of the canonical bundle over our

surface. The fact that our fan defines a convex polygon means that K is negative.

Given a strongly exceptional collection E , the quiver gauge theory can be constructed

from the inverse collection E∨. The members of E∨ are no longer sheaves but objects

in Db(V ). Lifting these objects to Y yields the fractional branes. At the level of D-

brane charges, the inverse collection can be constructed from the Euler character on V ,

χ(Ei, E
∨
j ) = δij . As a set of objects in Db(V ), E∨ is constructed via a braiding operation

called mutation described in detail in [10]. The inverse collection is also exceptional al-

though no longer strongly exceptional. The Euler character χ(E∨
i , E∨

j ) can be interpreted

as the number of arrows in the quiver from node i to node j minus the number of arrows

from node j to node i [14, 11]. This matrix is sometimes referred to as the antisymmetric

part of the adjacency matrix. More precisely, the Euler character tells us the net number

of Hom1
Db(Y )(E

∨
i , E∨

j ) maps in the Calabi-Yau between the fractional branes. For each of

these maps, we have a massless open string which translates into a bifundamental field in

the quiver gauge theory.

It is often convenient to write down an intermediate quiver, the so-called Beilinson

quiver, which lives on V instead of Y . This quiver contains arrows corresponding only to

6For a recent gauge theory interpretation of more general exceptional collections, see [43].
7For singular surfaces when D is not a Cartier divisor, O(D) is actually not a line bundle but only a

reflexive sheaf. Nevertheless, for simplicity, we will not emphasize this point further.
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the negative entries of χ(E∨
i , E∨

j ), or more precisely maps in Ext1(E∨
i , E∨

j ). The Beilinson

quiver algebra can be thought of as

⊕i,jHom(Ei, Ej) , (4.2)

but the quiver contains arrows only for the generators of this algebra which are encoded

simply in E∨. Because V is compact, the Beilinson quiver contains no oriented loops.

4.1 From exceptional collection to periodic quiver

In this section we assume that we have a compact toric surface V with positive anti-

canonical class and a strongly exceptional collection of line bundles E on V . We would like

to construct from this data a periodic quiver. In particular, we will write the Beilinson

quiver on a torus.

Any toric surface can be described by a fan by which we mean a collection of at least

three vectors vr, r = 1, . . . , n on an integer lattice Z
2. That the surface is compact means

that the polygon defined by the endpoints of the vectors vr includes the origin. That the

anti-canonical class of this surface is positive means that the polygon is convex. (We would

like to allow V to have quotient singularities.)

One way of understanding V is as a quotient of C
n. Given n vectors in Z

2, we expect

that there will be n − 2 linearly independent relations between the vr, which we write as

∑

r

Qarvr = 0 (4.3)

where a = 1, . . . , n − 2 and Qar ∈ Z. Geometrically, we quotient

C
n − F∆

(C∗)n−2
(4.4)

where the action of the (C∗)n−2 is given by the Qar. The set F∆ is a small set of points

inside C
n which we need to remove to have a well defined quotient.

As an example, consider P
2 for which the fan is v1 = (1, 0), v2 = (0, 1), and v3 =

(−1,−1). There is just one relation which we write as Q = (1, 1, 1). This quotient con-

struction is nothing but the usual equivalence relation of the homogenous coordinates on

P
2, namely (X1,X2,X3) ∼ (λX1, λX2, λX3) for λ ∈ C

∗. F∆ is the origin (0, 0, 0) of C
3.

For arbitrary V , we can think of X ∈ C
n as generalized homogenous coordinates. The

n − 2 equivalence relations (4.3) leave a two complex dimensional space which is V itself:

(X1,X2, . . . ,Xn) ∼ (λQa1X1, λ
Qa2X2, . . . , λ

QanXn) . (4.5)

This two complex dimensional space V is a fiber bundle π : V → B where B is a real

two dimensional surface and the fibers are real, two dimensional tori. More simply put,

the fibers are coordinatized by the phase angles of the complex coordinates on V . First,

we characterize this torus in greater detail.

Given the n − 2 vectors Qa and using the standard inner product on Z
n, we find two

additional vectors q1 and q2 such that qi · Qa = 0 and q1 and q2 are linearly independent.
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A canonical set of qi are the vr reinterpreted as two n dimensional vectors rather than n

two dimensional vectors: we could set q1r = vr,1 and q2r = vr,2. These qi can be used

to measure relative positions on the real two torus. Given the homogenous coordinates

(X1,X2, . . . ,Xn), we define the two torus coordinates to be

(θ1, θ2) =

(

∑

r

q1rArgXr,
∑

r

q2rArgXr

)

. (4.6)

Notice that if we shift Xr by λQar , (θ1, θ2) remains invariant because qi · Qa = 0.

Our D-branes are line bundles on V , and thus we can think of them as Euclidean

D4-branes filling all of V . If we perform fiberwise T-duality twice on the two torus, we

should find D2-branes localized at points on the torus. The open strings will then connect

these points together. The periodic Beilinson quiver is nothing but this web of D2-branes

and open strings.

We will characterize this web using the original line bundle (or D4-brane) description.

The notation O(D) indicates a D4-brane with a dissolved D2-brane; this dissolved D2-

brane has the same charges as a D2-brane wrapping the divisor D ⊂ V . We can describe

this dissolved D2-brane as magnetic flux. Because the line bundle is holomorphic, the field

strength components Fij = 0 = Fı̄̄ vanish, and locally the field strength takes the form

F = i∂i∂̄̄(f + f∗)dyi ∧ dȳ̄ (4.7)

where Aj = −i∂jf , Ā = i∂̄̄f
∗ and f is some function of the coordinate patch. By a gauge

choice, we may take the imaginary part of f to vanish.

In a toric variety, the phase angle directions θi are isometries, and the field strength

F describing the D2-brane should not depend on the θi. Because our variety is toric, we

can choose a complex structure such that yj = ln rj + iθj = ρj + iθj . In this coordinate

system, the field strength becomes

F =

(

∂2f

∂ρi∂ρj
+

∂2f

∂θi∂θj

)

dρi ∧ dθj +
∂2f

∂θi∂ρj
(dρi ∧ dρj + dθi ∧ dθj) . (4.8)

In order for F to be independent of θi, f must take a very special form. In particular,

f = g(r)+Cīy
iȳ̄ where the second term leads to a constant field strength. We will assume

this second term in f vanishes in which case the vector potential takes the very simple form

A =
∂f

∂ρi
dθi . (4.9)

At this point, we fix a point (r1, r2) ∈ B and look at the T 2 fiber, where we recognize

a Wilson line. Locally on the T 2, A = wjdθj is pure gauge; A = id ln Λ where Λ =

exp(−iwjθj). However, globally, Λ does not respect the periodicity conditions. We have a

distinct set of Wilson lines for 0 ≤ wj < 1, with (w1, w2) ∼ (w1 + n,w2 + m) for n and m

integers. This set of Wilson lines lives on a dual torus we will call T̃ 2.

Given a collection of line bundles, we can calculate the value of the Wilson line for

each such bundle and plot that point (w1, w2) on our T̃ 2 of length and height one. This

plot gives us the nodes of the periodic Beilinson quiver.
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The strings between the D4-branes come from the generators of the Beilinson quiver

algebra and as such are maps of the form Hom(Ei, Ej). Since the branes are line bundles,

we may write Ei = O(D), Ej = O(D′), and Hom(Ei, Ej) = H0(V,O(D′−D)). We expect,

given a generating element in Hom(Ei, Ej), to find a corresponding string between O(D)

and O(D′). Moreover, O(D) and O(D′) should be separated by a vector on the torus given

by the value of the Wilson line for O(D′ − D).

From the derived category point of view on Y , we know how to compute the masses

of these open strings [10, 11, 44], and the answer depends on being able to understand

instanton corrections as we move in the Kähler moduli space of Y . From the point of

view of the complex surface V and the Wilson line discussion, our intuition is that a string

stretching between two of these D4-branes will have a mass proportional to the distance

between the corresponding points on T̃ 2 [45]. As we change the base point, the Wilson

lines will all move around. Our naive expectation is that for massless strings, there is

a particular choice of base point for which the Wilson line corresponding to O(D′ − D)

vanishes. It would be interesting to understand these masses better from the Wilson line

point of view.

4.2 Line bundles and curvature forms for toric surfaces

In the previous section, we sketched a procedure for converting a set of line bundles on

a toric variety into a periodic quiver, but we did not explain why the construction would

respect the periodicity of the torus. For example, take two linearly equivalent divisors D

and D′. The corresponding line bundles O(D) and O(D′) correspond to the same D-brane.

Why then are the Wilson lines for O(D) and O(D′) the same? In this section, we will

attempt to answer this question and elucidate the structure of the corresponding vector

potentials.

Given a line bundle, O(D), and a particular choice of Kähler metric on a toric va-

riety, one can construct an explicit coordinate dependent expression for a representative

of c1(D) ∈ H2(V, Z). These representatives were first worked out by [46] (for a readable

and more recent account see [47]). This representative of O(D) is holomorphic, i.e. locally

of the form i∂∂̄f . Also, it is independent of the angular coordinates θi and so takes the

form (4.9) discussed previously.

These representatives have a number of disadvantages. In most cases, these represen-

tatives do not satisfy the remaining equation of motion gīFī = µ. Here, µ is a constant

often called the slope. Moreover, they depend on a particular canonical choice of Kähler

metric which is usually not the one of physical interest. Typically, we would be more inter-

ested in a metric which is compatible with a Ricci flat metric on the cone over V .8 Despite

these disadvantages, we use these explicit representatives for they form a useful beginning

from which to argue more general results.

We have thus far been working with complex coordinates ρ+ iθ, but these representa-

tives are most easily expressed in symplectic coordinates on V , x + iθ. The phase angles

8It may be that the metric compatible with a Ricci flat metric on the cone is not Kähler. For example,

the metric on dP1 compatible with the Y 2,1 Sasaki-Einstein metric is not Kähler [22].
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θi remain the same in both the complex and symplectic system. For the x, we define a

polytope

∆ = {x ∈ R
2 : 〈x, vr〉 ≥ −1 ∀r} . (4.10)

The symplectic form is then ω =
∑

i dxi ∧ dθi.

In these symplectic coordinates, the Kähler metric and complex structure depend on

a potential function g(x). Define

gij =
∂2g(x)

∂xi∂xj
. (4.11)

The line element becomes

ds2 = gijdxidxj + gijdθidθj (4.12)

where gij is the inverse of gij and summation on the indices is implied. The symplectic

coordinates are related to the complex ones by a Legendre transformation, ρ = ∂g/∂x.

The representatives of H2(V, Z) depend on a particular choice of g,

gcan =
1

2

∑

r

`r log `r , (4.13)

where we have defined

`r = 〈x, vr〉 + 1 . (4.14)

In the case of projective space, this metric is physically interesting: it’s Einstein and is

thus compatible with a Ricci flat metric on the cone over V . In general gcan will produce a

metric which is physically uninteresting albeit simple. A general Kähler metric is related

to gcan in a smooth way:

g = gcan + h (4.15)

where h is a smooth function on ∆.

We have seen already that a holomorphic vector bundle has a curvature form which may

be written as 2i∂∂̄f(ρ) for some locally defined function of f . In symplectic coordinates,

this two-form becomes

2i∂∂̄f =
∑

j,k

∂

∂xj

(

gkl ∂f

∂xl

)

dxj ∧ dθk . (4.16)

For the canonical choice of metric, we take the vector potential corresponding to O(Dr) to

be

Ar =
1

2
(gcan)kl ∂ log `r

∂xl

dθk . (4.17)

This Ar yields a curvature two-form which represents the class c1(Dr) but is in general not

harmonic. Note that Ar is only well defined away from the side `r = 0.

Using (4.17), we will prove a result about the Ar and then argue that the same result

must hold more generally for non-canonical metrics and Ar which do satisfy the equations

of motion. The result is that
∑

r

vr,iAr = dθi (4.18)
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or in other words, this particular combination of the Ar is pure gauge. The result follows

simply from noting that

(gcan)ij =
∑

r

vr,ivr,j

2`r

. (4.19)

More generally, because every divisor D =
∑

r arDr can be expressed as a sum of

primitive Weil divisors, we expect there to be a basis of primitive vector potentials Ar, r =

1, . . . , n such that AD =
∑

r arAr. We have now chosen the Ar to satisfy the equations of

motion, but they should be related to the canonical Ar in a smooth way. We say two divisors

D and D′ are linearly equivalent when they have the same Q charges,
∑

r Qar(ar −a′r) = 0.

All such linear equivalence relations are generated by the qi. If D and D′ are linearly

equivalent, then O(D−D′) ∼ O. But O corresponds to a single D4-brane with no dissolved

D2-brane charge. The associated field strength must vanish, and it must be that

∑

r

qirAr (4.20)

is pure gauge for i = 1 and 2.

We can deduce more from the statement that (4.20) is pure gauge. A gauge trans-

formation A → A + id ln Λ must respect the periodicity of the torus. Since the Ar take

the form f(r)dθ, the gauge transformation ln Λ which annihilates (4.20) must depend only

linearly on θ and not at all on x. The only choice is Λ = exp(inθ), from which we conclude

that
∑

r

qirAr = ni1dθ1 + ni2dθ2 (4.21)

for integers nij. The vr and our Wilson line torus are only defined up to an SL2(Z)

transformation so we choose

∑

r

q1rAr = dθ1 ;
∑

r

q2rAr = dθ2 , (4.22)

recovering the canonical result (4.18) in a more general context. This reasoning answers

the question posed earlier about why for linearly equivalent D and D′, O(D) and O(D′)

give the same Wilson line.

Before moving on, we study the vanishing of the generating set Ar because of a possible

relation to massless open strings. We wish to show that the Ar will vanish at corners of ∆

where Ar is well defined. For this demonstration, we rely on a result of Abreu [47] that

det(gij) =

[

δ(x)

n
∏

r=1

`r(x)

]−1

, (4.23)

where δ is a smooth function on ∆. Since we are on a surface, at a corner of ∆, the

determinant of gij involves a double zero, and it is straightforward to show that gij must

vanish. Since gij vanishes, from (4.16) we see that Ar will vanish as well unless the corner

is associated with the vanishing of `r.
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4.3 Bundles on P
2

To illustrate these ideas concretely, we present them for P
2. There are three Weil divisors

D1, D2, and D3 on P
2 corresponding to the three rays of the fan v1 = (1, 0), v2 = (0, 1),

and v3 = (−1,−1). From (4.17), the vector potentials for the corresponding three line

bundles, which in this case satisfy the equations of motion, are

A1 = −
1

3
(x1 − 2)dθ1 −

1

3
(1 + x2)dθ2 , (4.24)

A2 = −
1

3
(1 + x1)dθ1 −

1

3
(x2 − 2)dθ2 , (4.25)

A3 = −
1

3
(1 + x1)dθ1 −

1

3
(1 + x2)dθ2 , (4.26)

where the xi lie inside the triangle defined by x1 > −1, x2 > −1 and x1 +x2 < 1. These Ar

are all gauge equivalent to each other, which is expected since the corresponding divisors

are all linearly equivalent. The gauge transformation takes the form A → A + dλ where

λ = n1θ1 + n2θ2 and ni is an integer. The Wilson line corresponding to the Ar will not

change because the gauge transformation respects the periodicity of this square torus of

height and length one. Thus we see that O(D1), O(D2) and O(D3) appear as the same

point on T̃ 2. Indeed, for any line bundle of the form O(aD1 + bD2 + cD3), the point on

the torus will depend only on a + b + c. Any line bundle of the form O(aD1 + bD2 + cD3)

can equivalently be written as O(a + b + c).

We can take the vector potential corresponding to O(n) to be

−
n

3
(1 + x1)dθ1 −

n

3
(1 + x2)dθ2 (4.27)

Thus, given the exceptional collection O,O(1),O(2), we should plot points at p1 = (0, 0),

p2 = (−1−x1,−1−x2)/3 and p3 = 2(−1−x1,−1−x2)/3 or their translates on T̃ 2. These

three points correspond to the D-branes.

To connect these three D-branes with open strings, we return to the Ai (4.24)–(4.26).

Between O and O(1) or between O(1) and O(2), there are three possible paths corre-

sponding to D1, D2, and D3. The path corresponding to Di is defined by the Wilson line

associated to Ai. Instead of thinking of the Wilson line as a point on the torus, we now

think of it as a vector that joins two points. The resulting Beilinson quiver for P
2 is shown

in figure 13. We do not need to draw in additional arrows corresponding to maps between

O and O(2). All the requisite maps can be formed by joining together the arrows already

drawn.

These vectors corresponding to the Di shrink to zero size at special base points on the

polytope ∆. In particular, the string corresponding to D1 shrinks to zero at (2,−1), D2

shrinks to zero at (−1, 2), and D3 shrinks to zero at (−1,−1).

One startling feature of this Beilinson quiver is that the arrows will never cross, no

matter what our choice of basepoint (x1, x2). As the (x1, x2) moves to the boundaries of ∆,

arrows may become parallel and the three points may touch, but the arrows never cross.
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Figure 13: Four unit cells of the P
2 periodic quiver for basepoint (x1, x2) = (3/4,−1/2).

4.4 Constructing the quiver in general

Given a set of generating field strengths for the O(Dr), we can construct a family of periodic

quivers from an exceptional collection. A particular quiver in the family will depend on the

choice of basepoint (x1, x2) ∈ ∆. If the metric is of physical interest, e.g. it lifts to a Ricci

flat metric on the cone and provides a starting point for AdS/CFT constructions, and the

field strengths satisfy the equations of motion, we expect this periodic quiver to be the

quiver of physical interest. Thus, the quiver we described for P
2 should be the “correct”

quiver. Unfortunately, we in general do not have explicit expressions for the metric and

the field strengths, only the canonical representatives detailed above.

In the absence of physical data, we will work with the canonical metric and hope

that the resulting quiver is topologically if not geometrically accurate. Because we only

expect topological data, we will fix a particularly convenient choice of basepoint in ∆:

(x1, x2) = (0, 0). In this case, the vector potential becomes

Ar =
1

2
gklvr,ldθk . (4.28)

From this vector potential, we see that a general line bundle of the form O(
∑

r arDr) will

be plotted on the torus with coordinates

(

∑

r

q1rar,
∑

r

q2rar

)

, (4.29)

where

qir =
1

2
gilvr,l . (4.30)

These two qir are orthogonal to the Qa and are in fact the same as the qi discussed

previously. Because gkl is complicated and we are after only topological information, let

us rescale the qir and the associated torus by a gkl ∈ GL2(R) transformation, choosing

qjr = vr,j as before.

The procedure for constructing the quiver is very simple. Given a strongly excep-

tional collection of line bundles E = (E1, E2, . . . , En), take Ej = O(
∑

r arDr) and Ek =
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O(
∑

r brDr). The homomorphisms from Ej to Ek are generated by the global sections of

O(
∑

r(br − ar)Dr). Start with the monomial
∏

r

Xbr−ar
r . (4.31)

This monomial has charges
∑

r Qar(br − ar). To be a global section, br − ar ≥ 0 for all

r (or there will be a pole). However, there may be more than one such monomial with

this charge. Construct all such monomials. Call the set of such monomials Mjk. For each

m ∈ Mjk, where m =
∏

r Xcr
r , we compute

(φ1, φ2) =

(

∑

i

q1rcr,
∑

i

q2rcr

)

(4.32)

This vector (φ1, φ2) is the relative position of nodes j and k on T̃ 2. Fixing the position of

E1, we now have specified the location of all the nodes of the quiver.

Instead of a T̃ 2 of length and height one as before, because of the rescaling, the period

vectors of this torus are the qi. If we take two points of the quiver separated by aq1 + bq2,

in the language of line bundles, we have O(D) and O(D +
∑

r(aq1r + bq2r)Dr). However,

since the qi are orthogonal to the Qi, D and D +
∑

r(aq1r + bq2r)Dr have the same Q

charges and are linearly equivalent as divisors. In other words, these two points are the

same.

Starting with the set Mk,k+1, we draw an arrow from node k to node k + 1 for each

m ∈ Mk,k+1. We repeat this procedure for line bundles of the form Ek and Ek+2. There is

an additional complication now. It may happen that the monomial m = m1m2 where m1

joins nodes Ek with Ek+1 and m2 joins nodes Ek+1 and Ek+2. If such is the case, then we

do not add an arrow corresponding to m. The entries of χ(E∨
i , E∨

j ) let us know how many

arrows we should be writing down. Recursively, we consider Ek and Ek+i and continue

until all the arrows in the Beilinson quiver are drawn.

Take dP1 to illustrate these ideas. A fan is v1 = (0, 1), v2 = (1, 1), v3 = (0,−1), and

v4 = (−1, 0) from which we choose

q =

(

0 −1 0 1

−1 −1 1 0

)

. (4.33)

An exceptional collection on dP1 is O,O(D1),O(D4 + D1),O(D4 + D1 + D3). Using the

procedure described above, we find the Beilinson quiver, figure 14.

For example, consider the paths between O(D4 + D1) and O(D4 + D1 + D3). We look

for all monomials with the Q charges of D3, in other words x3, x1x4, and x1x2. These

three monomials have torus charges q, (0, 1), (1,−1), and (−1,−2) respectively. On our

torus, node 4 is indeed at relative positions (0, 1), (1,−1), and (−1,−2) to node 3 with

corresponding arrows drawn in.

4.5 Vanishing Euler character

We can argue that the Euler character of the torus (to be distinguished from the Euler

character of the exceptional collection) must vanish and so the most obvious obstruction to
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Figure 14: The periodic Beilinson quiver for dP1 with fundamental cell.

writing the quiver on a torus is eliminated. (Of course, we don’t have an arbitrary collection

of lines, vertices, and faces, but have instead completely specified the connectivity, and it

remains unclear that the pattern of connectivity will be compatible with a torus structure.)

Given exceptional collections E and E∨, in terms of charges, we can decompose any sheaf

F into the E∨
j or the Ej:

ch(F ) =
∑

j

χ(Ej, F )ch(E∨
j ) ; ch(F ) =

∑

j

χ(F,E∨
j )ch(Ej) . (4.34)

We are interested in quivers that come from a stack of D3-branes, which look like a point

in V . Thus, for a skyscraper sheaf

ch(Opt) =
∑

j

χ(Ej ,Opt)ch(E∨
j ) =

∑

i,j

χ(Ej ,Opt)χ(E∨
j , E∨

i )ch(Ei) . (4.35)

The rank component of the chern class of a skyscraper sheaf vanishes, and χ(Ei,Opt) =

rk(Ei). Thus,

0 =
∑

i,j

rk(Ei) rk(Ej)χ(E∨
i , E∨

j ) . (4.36)

For these toric exceptional collections, we find exceptional collections of line bundles where

the ranks are all one. Thus, the sum over the entries of the Euler character must vanish.

But this sum has a different interpretation. The sum over the diagonal entries is the

number of gauge groups. The sum over the negative entries is the number of arrows in

the Beilinson quiver, and the sum over the off-diagonal positive entries is the number of

relations:
∑

i,j

χ(E∨
i , E∨

j ) = gauge groups − arrows + relations . (4.37)
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Now for these toric quivers, we know that each relation corresponds to two superpotential

terms. Moreover, when we lift to the Calabi-Yau quiver, each relation also becomes an

additional arrow. Thus, for the Calabi-Yau quiver

gauge groups − arrows + superpotential terms = 0 (4.38)

which is exactly the condition that the Euler character of the torus vanish because for each

gauge group we have a node, for each arrow an edge, and each superpotential term a face in

the quiver.9 Moving back to the Beilinson quiver now consists of removing a set of arrows,

which cannot change the Euler character of the graph. This demonstration of vanishing

Euler character is complementary to but distinct from a similar observation in [2] where

the authors use R-charge constraints to prove that the Euler character of the brane tiling

vanishes.

5. Compatibility

Having established that one can derive periodic quivers from exceptional collections, we

now study the possibility of generating such collections by means of brane tilings. In this

section we define a map that assigns line bundles to paths in the quiver. This map can be

used to compute an exceptional collection on a complex surface that shrinks to zero size

at the singularity. The exceptionality can be checked on a case-by-case basis. Given these

bundles, one can reconstruct the quiver based on mathematically rigorous procedures [4, 7 –

12, 48]. By reinterpreting paths and perfect matchings in the tiling language, we explicitly

prove that this construction gives back our original quiver.

5.1 Beilinson quivers and internal matchings

For the exceptional collection technique to be useful when applied to toric Calabi-Yau

manifolds, we need the toric diagram to contain at least one internal point. This restriction

means that our manifold can be partially resolved by blowing up a 4-cycle. Let us consider

the tiling for this Calabi-Yau which can be most efficiently constructed by the Fast Inverse

Algorithm [15, 16]. Let us also fix a reference internal matching PM0 that resides at one

of the internal points of the toric diagram. We can set the origin at this point.

If we remove those bifundamentals from the quiver that are contained in PM0, then

we obtain another smaller quiver. We will show that this subquiver contains no oriented

loops and therefore has the right properties to be a Beilinson quiver for the relevant 4-

cycle.10 For an example see figure 2. This Beilinson quiver is generated by deleting the

bifundamentals that are contained in the 4th perfect matching of figure 9. Recall that the

Beilinson quiver was defined at the beginning of section 4 from an exceptional collection.

Here, we define an intermediate notion

Definition 5.1.1. We define a pre-Beilinson quiver to be a connected subquiver of the

gauge theory quiver that contains no oriented loops and all the nodes of the original.

9We would like to thank Aaron Bergman for this observation relating χ(E∨
i , E∨

j ) to the Euler character

of the torus.
10We would like to thank Robert Karp for discussion about this point.

– 22 –



J
H
E
P
0
7
(
2
0
0
6
)
0
0
1

Let us summarize some additional terminology we use in the following.

Definition 5.1.2. An oriented path is a path in the quiver that respects the direction of

the arrows.

Definition 5.1.3. Paths in the quiver that also exist in a Beilinson (or pre-Beilinson)

quiver are called allowed paths.

We say that a path crosses an edge in the tiling if the path contains the corresponding

arrow in the quiver. Paths that exist in the Beilinson quiver will not intersect the edges of

PM0. It is easy to see that F-terms transform allowed paths to allowed paths. Closed paths

may wind around the tiling torus, and the winding can be characterized by the homology

class of the loop (p, q). The (0, 0) loops are called trivial loops. By definition, the length

of an oriented path is the R-charge of the corresponding operator. Paths can be related

by F-term transformations, but these transformations will not change the total R-charge

associated to a path. The height functions of the external matchings with respect to PM0

are called height coordinates.

Lemma 5.1.4. In a consistent tiling, an internal perfect matching determines a pre-

Beilinson quiver by removing those bifundamentals from the quiver that are contained in

the matching.

Proof. Removing bifundamentals from the gauge theory quiver that are contained in PM0

does not remove nodes and does not create disconnected pieces. The nontrivial part of the

proof involves the oriented loops.

(i) First we show that trivial allowed loops cannot exist. Such a loop would contain

at least one edge e. By crossing this edge in the tiling, some of the height functions would

increase by one. The increase happens exactly when the corresponding perfect matchings

contain e. Allowed paths will never go “downhill” on the graph of any height function,

because then they would have to cross an edge in PM0 which is not allowed (the edge is not

present in the pre-Beilinson quiver). See figure 15 for the schematic picture. The increase

of the height function is “irreversible”, i.e. the function is monotone along an allowed path;

hence we have arrived at a contradiction.

For this argument to hold one has to show that e is contained in at least one perfect

matching. We can suppose this, since otherwise we can omit this edge from the tiling and

still get the same toric diagram which questions the consistency of the original tiling.

(ii) We also need to show that there are no non-trivial loops in the pre-Beilinson quiver.

These non-trivial loops wrap the torus cycles. Suppose that there exists such a loop. This

oriented loop is a face path on the brane tiling with homology class (x, y) ∈ Z
2 as in

figure 16. Let us take an arbitrary external matching PMi at (si, ti). We can compute the

height function assigned to this matching with respect to PM0.

The height function should not decrease along the path. As an immediate consequence,

the scalar product (si, ti) ·(x, y) must be nonnegative. On the other hand, the set of vectors

{(si, ti)} span the whole 2d space with positive coefficients, and thus at least one of these

vectors has negative scalar product with (x, y). This is a contradiction; therefore the

pre-Beilinson quiver doesn’t contain non-trivial loops.
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height=n+1 height=n

Figure 15: Allowed face paths (i.e. paths in the Beilinson quiver) go always uphill. The height

function increases by one at the line constituted of the black perfect matching and the green reference

matching. The red path cannot cross the green edges (they are not in the Beilinson quiver). Hence

when crossing the contour line, the red path has to cross a black edge. Crossing the black edge

increases the value of the height function.

(x,y)

Figure 16: Gradient vectors in the toric diagram. The coordinates of the blue (si, ti) vectors give

the monodromy of the height function of the perfect matching sitting at their endpoints. The red

(x, y) arrow is the gradient vector of the hypothetical nontrivial loop.

5.2 Line bundles from tiling: the Ψ-map

In the last section we saw that a candidate Beilinson quiver could be created from an

internal perfect matching. In this section we continue by defining a map Ψ that assigns a

divisor to an allowed path by using external perfect matchings. We conjecture that these

divisors give exceptional collections of line bundles which we will use to reconstruct the

Beilinson quiver.

A Weil divisor can be represented by an integer function over the external vertices of

the toric diagram polygon (see figure 17). We call two such integer functions equivalent if

they differ by a linear function f(x, y) = xm + yn which defines a principal divisor. (Here

x and y are coordinates on the plane of the polygon.)

Let us fix an arbitrary oriented path P . Then, Ψ(P ) gives a divisor, i.e. an integer

function over the external nodes. We define this map by using the matchings of the tiling.

For each external node vr, there is a corresponding unique perfect matching11 PMr. We

assign to the divisor Dr the integer Ψr(P ) that is the number of edges in PMr which are

crossed by the path P . In figure 18 we see an example.

11We assume that the tiling is consistent and there are no “external multiplicities”, i.e. there is a unique

perfect matching corresponding to each external node of the toric diagram.
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D3

D4

2

1

1 0

Figure 17: An integer function over the external nodes determines a divisor and therefore a sheaf

of sections of the corresponding line bundle. The numbers in the figure denote O(D1 + D3 + 2D4).

1 1

1

2

2 2

2

33

33

3 3

44

4
1

4
X13

X34
(1)

1

1

1 0

(0,1)

(0,0)

Figure 18: The Ψ-map.

The left hand side shows the brane tiling for dP1. The red path P crosses two edges;

hence it labels the operator X13 · X
(1)
34 . There is a corresponding oriented 1 → 3 → 4 path

in the quiver as in figure 1. We have chosen the 4th matching from figure 9 as the green

reference matching. To show how to compute Ψ8(P ), we have drawn the 8th matching of

figure 9 (in blue). The shading of the faces indicates the height function of this matching

that has (0, 1) monodromy. The red path crosses one blue edge in the matching (namely

X
(1)
34 ); hence Ψ8(P ) = 1. One can compute the other integer “intersection numbers” with

the help of the other external perfect matchings. The resulting numbers are indicated in

red. These numbers define a Weil divisor on the base of the threefold. The numbers can

also be interpreted as the increase in the height coordinates as we go along the path P . If

the path is an allowed path (Definition 5.1.3) starting at face A and ending at B, then Ψr

is simply the hr(B) − hr(A) difference in the height function that corresponds to the rth

external node. Ψ is a well-defined function on the paths of the quiver. In fact, it does not

depend on the choice of the reference perfect matching (modulo linear equivalence).

The Ψ-map can be extended to unoriented paths, i.e. paths that do not respect the

arrow direction in the quiver. When crossing an edge in PMi in the reverse direction, we

subtract one instead of adding one in computing Ψr(P ).

Let Ci denote the Abelian group of chains in the periodic quiver. Here the quiver is

understood as a discretization of the 2-torus. This is the free group generated by the edges
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in the quiver with integer coefficients. The elements of C1 take the following form

P =
∑

i

ciXi (ci ∈ Z) (5.1)

where Xi denotes the ith edge. We denote the cycles in Ci by Zi and the boundaries by

Bi. Elements of B1 are built out of trivial loops. Ψ can be extended in a straightforward

way to be defined on C1

Ψr =
∑

j

cpj
(5.2)

where {pj} is the list of edges in the rth external matching. In the following, we will study

the properties of this extended Ψ-map.

For an elementary loop around a node in the tiling, the image of Ψ is a constant

function (the anticanonical class K). Since all the perfect matchings cover this node, each

matching is intersected by the loop precisely once; hence Ψr = 1 for all r. This coincides

with the observations made in [3]. In fact, one can easily prove that the entire B1 subgroup

is mapped to constant functions.

Gauge invariant mesonic operators can be constructed from arbitrary oriented loops.12

These are the elements of Z1. For these loops Ψ assigns non-negative affine functions on

the toric diagram parametrized by three integers. These functions are points in the dual

cone. This is being investigated in [51].

We will now use Ψ to compute a collection of line bundles. We choose an internal

reference matching which determines a Beilinson quiver and therefore an ordering of the

faces in the tiling. Without losing generality, we relabel the groups such that there are no

arrows from node i to j if i > j.

Let us fix an allowed path Pi for each face in the tiling (for dP1 see figure 19). We

will call {Pi} the set of reference paths. We choose these paths such that they start on face

1 and end on the specific face. This is possible because the Beilinson quiver is connected.

Then, Ψ maps each of these paths to a Weil divisor (see figure 20 for the image). These

divisors determine a collection of line bundles.

There is a general freedom in the choice of these paths. The terminal faces can also be

chosen from different fundamental cells. We demonstrate this ambiguity in figure 21. Let

us pick two different paths that end on the same faces but in different fundamental cells.

Recall that Ψ maps closed loops to linear functions; hence the difference of the resulting

divisors is linear, which means that they are in fact equivalent. Note that Ψ gives the same

set of integers for operators (paths) related by F-term equations.

After determining the divisors that correspond to the Pi paths, we are ready to write

down an exceptional collection. We introduce the notation

O

(

∑

r

arDr

)

≡ (a1, a2, . . . , an) (5.3)

12Related work on mesonic operators was recently done in [49, 50].
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Figure 19: The reference paths are allowed paths to each face. They start from face 1 and don’t

cross the edges of the green internal matching; hence they are paths in the Beilinson quiver.

1 2 1 3 1 3 4

0

0

1 0

0

1

0 0

1

1

1 0

Figure 20: The three divisors computed from the paths to the faces.

1 1

2 2

2

3

4

4

1

4

1

1

1 0

1

1 0

−1

0

2

00

Figure 21: Face 4 can be assigned with either the red or the yellow allowed path. The resulting

Weil divisors are shown on the right-hand side. We see that they differ by a linear function, i.e. they

are equivalent.

We assign the line bundle of the divisor Ψ(Pi) to the ith face. The integer numbers sitting

at the external nodes are the ai coefficients. For the first face we assign (0, 0, . . . , 0). In

our dP1 example from figure 20 we obtain the following collection:

(0, 0, 0, 0), (1, 0, 0, 0), (0, 0, 1, 0), (1, 0, 1, 1) (5.4)

which is exactly the collection discussed in section 4.4.

Another example for the Y 3,2 theory is presented in the appendix.

Before moving on, we would like to point out that the Ψ-map efficiently computes the

divisors that correspond to dibaryons. In order to obtain the divisor for the bifundamental

X, we simply compute Ψ(X). For dP1 we get the following list
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field divisor

X12 (1, 0, 0, 0)

X
(1)
23 , X

(2)
23 (0, 1, 0, 0) ∼= (0, 0, 0, 1)

X
(1)
41 , X

(2)
41 (0, 1, 0, 0) ∼= (0, 0, 0, 1)

X42 (0, 0, 1, 0)

X13 (0, 0, 1, 0)

X
(1)
34 , X

(2)
34 , X

(3)
34 (0, 0, 1, 0) ∼= (1, 1, 0, 0) ∼= (1, 0, 0, 1)

in precise agreement with section 5.1 of [14]. The linear equivalence relations ∼= are easily

established. Let us show that (0, 0, 1, 0) ∼= (1, 0, 0, 1). The difference divisor (1, 0, 0, 1) −

(0, 0, 1, 0) = (1, 0,−1, 1), shown on the right hand side of figure 21, has a Ψ map of the

form Ψ = y−x. In other words (1, 0,−1, 1) is a principal divisor and the linear equivalence

follows.

In this section we defined the linear Ψ-map that computes the divisors corresponding

to the bifundamental fields. This map can be used explicitly to write down a collection

of line bundles for the singularity. Unfortunately, we are lacking a general proof that the

generated collections are always exceptional. Strong exceptionality may be checked on a

case-by-case basis.

5.3 Reconstructing the quiver

In section 5.2 we introduced the general method, the Ψ-map, that computes a collection

of line bundles that is presumably strongly exceptional. Given such a collection, we can

use rigorous methods to construct the quiver of the gauge theory. In this section we prove

that the quiver obtained this way matches with the dual graph of the tiling which was our

starting point.13

Let us denote the exceptional collection by {Ei}. We define the matrix

Sij = dim Hom(Ei, Ej). (5.5)

The matrix elements in S tell the number of ways of getting from node i to node j in the

Beilinson quiver, taking the relations into account. The inverse of this matrix gives the

quiver directly up to bidirectional arrows. The nonzero elements of S−1
ij (i < j) are the

number of arrows from j to i minus the number of arrows from i to j in the quiver.

Since we are dealing with line bundles on toric manifolds, the computation of

dim Hom(Ei, Ej) gets vastly simplified [21]. This dimension is equal to the number of

global sections of the bundle Ej ⊗E∗
i , which we denote by O(

∑

r arDr). Then, the dimen-

sion is obtained by counting the lattice points inside the polygon

∆ij = {u ∈ R
2 : u · vr ≤ ar for all r} (5.6)

where vr ∈ Z
2 is the position of the rth external node in the toric diagram. See the

left-hand side of figure 22 for an example.

In section 5.2 we computed the (5.4) exceptional collection for dP1. Using the above

described method, the S matrix and its inverse are determined

13We will prove this for the non-periodic McKay quiver.
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jidim Hom(E ,E )
Brane tiling cells

1

4

3

2

∆

Figure 22: Determining the S2,4 matrix element. In this case E4 ⊗E∗
2

= (1, 0, 1, 1)− (1, 0, 0, 0) =

(0, 0, 1, 1). The figure shows the lattice of the ∆2,4 polygon and its bounding inequalities. The red

lattice points inside ∆2,4 can be identified with adjacent fundamental cells in the brane tiling.

S =











1 1 3 6

0 1 2 5

0 0 1 3

0 0 0 1











S−1 =











1 −1 −1 2

0 1 −2 1

0 0 1 −3

0 0 0 1











(5.7)

We see that S−1 gives precisely the quiver in figure 1.

In the following, we will show that this lattice point counting method of determining

the number of paths from node i to node j in the quiver is identical to the same computation

on the brane tiling. Since the number of paths essentially encodes the quiver via S and

S−1, we are proving that the collection of line bundles encodes the quiver of the original

brane tiling.

The key observation is that the lattice of ∆ij can be identified with the lattice of funda-

mental cells of the brane tiling.14 This is shown in figure 22. In particular, we will assign

the lattice points to the jth faces in the cells. The simple counting of lattice points also

counts the inequivalent allowed paths from face i to face j. There can be many such paths,

but their number is finite, since no loops are allowed. The lattice points in ∆ij are in

one-to-one correspondence with adjacent fundamental cells that contain the final j faces

where these paths end. In figure 23 these are the five faces marked in yellow. We see

that to one of these faces there are two allowed paths leading. This shouldn’t trouble us,

since these are equivalent paths related by the U1
2 V 2 = U2

2 V 1 F-term equation for the Y2

bifundamental field that separates face 2 and face 4. In fact, it turns out that a general

feature of consistent tilings is that homotopic paths of the same length (measured by the

R-charge of the corresponding trace operator15) are F-term equivalent. In the following,

we will prove this statement.

14We thank Alastair King for related discussions.
15In fact, any trial R-charge can be used to measure the length.
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Figure 23: The figure shows the allowed paths that start on face 2 and end on face 4. The

endpoints of these paths are in different fundamental cells which are in one-to-one correspondence

with the lattice points inside ∆2,4 that has been used to compute dim Hom(E2, E4).

XB

C

U

V

A

Figure 24: The F-flatness equation for the X bifundamental field is CBA = V U . This states the

equivalence of the two green paths in the figure.

Lemma 5.3.1. In a consistent tiling, paths of the same length are F-term equivalent iff

they are homotopic.

Proof. F-flatness equations are local transformations of the paths (figure 24); hence they

transform homotopic paths into one another. Applying such a transformation to the path

does not change the R-charge of the corresponding operator. We need to show that two

homotopic paths are equivalent.

As an illustration, figure 25 shows two such paths in a square lattice that can be

deformed into one another by F-terms. The rhombi they surround are also shown separately

in the right-hand side of the figure. This area has two bounding lines: AA1A2A3B and

AB1B2B3B. On the boundary we find two kinds of rhombus nodes alternating: Every

other node is also a node of the tiling (A1, A3, B1, B3). We call these odd nodes. The

remaining even nodes (A,A2, B,B2) are only vertices in the rhombus lattice.

We can start deforming path 1 by using the F-term equation for the tiling edge A3B3.

We also see that using the F-term equation for A1B1 is not possible because path 1 does

not contain A1B3. At the level of the rhombus lattice the difference of the two nodes A3

and A1 can be quickly seen: There is no red rhombus lattice edge in the pink area that

connects A3 to another node, whereas A1 has one edge, namely A1B2. To summarize, the

area between two paths can be reduced by F-terms where the boundary nodes don’t have

rhombus edges.
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Figure 25: Homotopic paths are equivalent. The left-hand side of the figure shows two paths

represented schematically by green lines. The tiling is colored black and the underlying rhombus

lattice is shown by dotted lines. The pink area surrounded by the two paths is also shown separately.

B1

A3

A

2

A2

B B

B

m

1A nA
...

...

1

2

Figure 26: Two homotopic paths that pass around the pink area. Each boundary node

(A1, . . . , An, B1, . . . , Bm) has at least one rhombus edge which ensures that the area cannot be

reduced by F-terms.

Let us consider two homotopic paths that start and end on the same two faces. For

simplicity, we assume that the paths are not intersecting. We also assume that the area

between the two paths has been completely reduced, i.e. there are no more F-terms that

we can use to decrease it. This is equivalent to requiring that the odd nodes along the

boundary have at least one rhombus edge going to the interior of the area. One can

check that by construction the even nodes always have at least one rhombus edge. (In the

previous example, such nodes were A2 and B2.) The reduced area can be schematically

drawn as in figure 26.

If we suppose that there is precisely one red rhombus edge at each Ai and Bj node

and there are no edges at A and B, then we recognize a straight rhombus path built out

of the ri (i = 0, 1, 2, . . . , n) rhombi. These are located at the boundary next to path 1 (see

figure 27).

This rhombus path corresponds to a zig-zag path in the tiling. The opposite edges of

the rhombi are parallel; hence AB1 is parallel to BmB. The same argument applies for

the rhombi on the other side of the area; hence AA1 is parallel to AnB. As a consequence,

some of the rhombi in the area must be degenerate (here r0 and rn), i.e. the R-charges of

– 31 –



J
H
E
P
0
7
(
2
0
0
6
)
0
0
1

B1

A3

2

A

A2

B B

B
nr

2r
1r

0r

m

1A
...

...

An...

Figure 27: The straight rhombus path in the area contains rhombi r0, . . . , rn. The existence of

this series of rhombi constrains AB1 to be parallel to BmB.

0
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B

A
A

B

C

D

Figure 28: The embedding of the dual cone in the tiling torus.

the corresponding fields are zero or negative and the tiling is inconsistent. Here we used

that there is one rhombus edge for each node.

Extra rhombus edges joining to Ai, Bj or to the endpoints A or B can’t be used to

restore the consistency of the tiling since they make the rhombi even more degenerate.

This can also be seen by looking at the sum of internal angles of the A, A1, . . . , An, B,

Bm, . . . , B1, A pink polygon. This polygon has n+m+2 vertices, hence the sum of angles

should be (n+m)π. Every rhombus next to the boundary contributes π to the sum, except

for the rhombi at A and B whose contribution can be bigger. If there are extra rhombus

edges at a particular node, then we also get contribution from those rhombi that touch this

node but they don’t have a common edge with the boundary polygon. Since there are at

least n + m rhombi, the total sum of angles is greater than (n + m)π; hence the polygon

must be degenerate.

As an immediate corollary, the lemma proves the following observation of [52]

Corollary 5.3.2. The structure of the chiral ring is naturally encoded in the non-trivial

cycles of the tiling torus. In particular, the dual cone can be “embedded” in the infinite

tiling [53].

The embedding is sketched in figure 28.

One can assign gauge invariant mesonic operators to each of the monomials in the dual

cone. For the A,B,D monomials we assigned three green paths that are schematically
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Figure 29: Inequivalent A → B homotopic paths in an inconsistent tiling.

shown in the right-hand side of the figure. They start and end on the same square in the

tiling. Keeping these endpoints and the lengths fixed, they can be freely deformed due to

Lemma 5.3.1.

Then, the endpoints of the paths in the lattice of fundamental cells can be identified

with the projection of the monomials onto the red tiling plane. To reach the bulk of the

cone (here the monomials B and C), the path has to contain loops, e.g. small loops around

a tiling node. For instance, the tip of the cone and C are projected to the same point;

therefore the corresponding path to C must be a trivial loop. It can be chosen to be the

appropriate power of any term in the superpotential.

Corollary 5.3.3. For the consistency of the tiling a necessary condition is that homotopic

paths of the same length are F-term equivalent.16

If the tiling is inconsistent, it might be possible to construct two inequivalent paths

surrounding the “inconsistency”. An example is shown in figure 29 where the tiling con-

tains the subgraph of figure 15 in [15]. We recognize the two rhombus paths and the

corresponding tiling zig-zags along the boundary of the pink area. Since no F-terms can

be used, the paths are inequivalent.

After proving the lemma and investigating some of its corollaries, let us turn back to

the original problem. We want to show that the matrix element Sij gives the number of

inequivalent paths from i to j. In order to prove this, we need to show that for each u

lattice point in ∆ij, we have a unique allowed path in the tiling starting on the ith face

and ending on the jth one. These jth faces are in different fundamental cells that are in

one-to-one correspondence with the u lattice points.

The previous lemma ensures that we have a single path for each cell. To see this, we

need to prove that allowed homotopic paths have the same length. Suppose that there

exist two homotopic paths of different lengths. Using F-term equations, we can deform

the longer path to the shorter one as in figure 30. Thus, we end up with loops around

tiling nodes which are evidently not allowed, since these loops intersect PM0. Recalling

that F-terms transform allowed paths to allowed paths, we arrive at a contradiction. This

16An immediate question arises: Is this condition sufficient? Can consistency be defined as the equivalence

of homotopic paths? We leave this question for future study.
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Figure 30: Homotopic paths with different R-charge are not equivalent. After applying the F-term

equation for A3B1, the long path (solid green line) gets transformed to the short path (dashed line)

plus a small loop around the A1 node in the tiling.

means that in a consistent tiling homotopic allowed paths always have the same R-charge

and are equivalent.

Having proved that from the ith face of a fixed fundamental cell there exists at most

one inequivalent path to the jth face of any cell, we also need to show that these cells where

the paths can end are in one-to-one correspondence with the u lattice points. In order to

do so, we reinterpret the (5.6) bounding inequalities of ∆ij.

In the definition of ∆ij, we have a u · vr ≤ ar constraint for each external node of

the toric diagram. For a given path, u is interpreted as the integer vector defined on the

lattice of fundamental cells giving the distance of the cells wherein the ith and jth faces

reside. In the tiling language, vr is the monodromy of the height of the rth external perfect

matching. Thus, the scalar product gives the increase in the rth height coordinate. Hence,

the ar variables should be interpreted as height differences. In fact, this is exactly how we

computed them with the Ψ-map in section 5.2.

Figure 31 illustrates the correspondence schematically. The figure shows three in-

equivalent allowed paths that connect face A to different B faces. The shading indicates

the rth height function. The height changes along the edges in the superposition of the

corresponding matching and PM0. This level set is represented by purple dashed lines.

The right-hand side of figure 31 shows the lattice of ∆AB along with a green bounding

line. The lattice points are in one-to-one correspondence with the red fundamental cells

on the left-hand side. In particular, we assign them to the B faces sitting in the cells. We

set the origin at the middle point which is assigned to the upper left B face in the tiling.

How does the green constraint come about? From previous discussions in section 5.1

we know that allowed paths can only go uphill on the height function. For example, in

figure 31 the paths can cross the dashed lines in the direction of the small arrows; therefore

we can’t reach the B face in the lower right corner. This face corresponds to the excluded

point on the right-hand side shown by the dotted arrow.

Using the above interpretation of u, we can immediately write down a necessary (and

sufficient) condition for the allowed paths. In our schematic example, we have vr = (1,−1)

which is the average “gradient vector” of the height function. Naively, the constraint
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Figure 31: The figure schematically depicts three allowed green paths from A to B. The shading

indicates one of the height coordinates. The height increases in the direction of the small arrows.

The allowed paths can only cross the dashed lines in this direction, and thus we obtain a bounding

inequality for ∆AB. The remaining edges can be determined by means of the other heights.

translates to the following inequality for the allowed paths

u · vr ≤ 0 (5.8)

This is not quite right, because the paths start from A not B. One can take this into

account by adding the difference in their height coordinates to the right-hand side

u · vr ≤ dr (5.9)

By using the PA and PB reference paths that connect the first node of the Beilinson quiver

to A and B, one can see this difference is given by dr = Ψr(PB) − Ψr(PA).17 Let us

denote the ith line bundle in the exceptional collection by (ai
1, a

i
2, . . . , a

i
n). Recalling from

section 5.2 how we have determined the collection, we obtain dr = aB
r − aA

r . Our final

expression is then

u · vr ≤ aB
r − aA

r (5.10)

which is precisely the inequality in the definition of ∆AB !

We can write down the remaining inequalities for the constraints coming from the

other height functions in exactly the same way. Thus, we obtain the boundaries of ∆AB.

We have seen that the inequalities are equivalent to the fact that allowed paths can’t

go downhill on any of the height functions of the external matchings. This completes the

correspondence between the lattice points of ∆ and the allowed paths, and thus proves

that Sij indeed counts the inequivalent paths in the tiling.

Let us summarize the main results of this section. Given a consistent brane tiling,

we can compute a B Beilinson quiver and an {Ei} collection of line bundles by means of

17In the example of figure 31, the difference is dr = 1−0 = 1, i.e. there is one level line between A and B.
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an internal matching and the Ψ-map.18 One may check on a case-by-case basis that this

collection is exceptional.

In this section we have proved that the “true” Beilinson quiver of the gauge theory

living in the worldvolume of the D3-branes is the same as B, the original quiver which is

obtained directly from the tiling. In particular, we proved that the number of inequivalent

paths between two nodes are the same.

As a byproduct, we obtained that homotopic paths with the same R-charge are F-term

equivalent. Thus, we could clarify the relation of the brane tiling to the dual cone by a

projection of the lattice points of the cone onto the tiling plane. This gave an explicit

correspondence between monomials and paths.

6. Conclusions

Brane tilings can be deceptively simple. With a few strokes of a pen, all of the data of

a N = 1 supersymmetric quiver gauge theory — the matter fields, the gauge groups, the

superpotential — are captured. Given these simple pictures, theorems should be easy to

prove, but we have often found otherwise. In the following paragraphs, we outline our

successes but also the work that remains to be done to prove our dictionary between brane

tilings and exceptional collections.

In section 4, we provided a recipe that will convert any exceptional collection of line

bundles into a periodic quiver and motivated the recipe using Wilson lines and a little

mirror symmetry. In the cases we looked at, this periodic quiver was the graph theoretic

dual of a brane tiling. Thinking of the periodic quiver as a triangulation of a surface,

we proved that the Euler character vanished. Since the exceptional collection specifies

the connectivity of all the vertices, edges, and faces, a vanishing Euler character is not

necessarily enough to ensure the quiver can be written on a torus. We hope to return to

this issue in the future.

In section 5, we provided a recipe that will convert any brane tiling into a collection of

line bundles. Two key observations underlie this recipe. The first is that internal perfect

matchings of the tilling are in one-to-one correspondence with Beilinson quivers and hence

with exceptional collections. The second is that external perfect matchings are in one-to-

one correspondence with the generating Weil divisors Dr and can be used to convert paths

in the brane tiling into sums of divisors
∑

arDr via the Ψ-map.

We left the word exceptional out of the first sentence of the preceding paragraph on

purpose. On a case by case basis, we can verify the collections are exceptional, using for

example the techniques described in [12]. However, proving that the collection is excep-

tional in general is difficult. There is a paper by Altmann and Hille [60] who prove strong

exceptionality for quivers without relations (no superpotential) using Kodaira vanishing.

The Kodaira vanishing theorem and certain generalizations are a powerful way of proving

18For a specific Calabi-Yau, there are many equivalent Seiberg dual phases of the quiver theory [6, 54 –

59, 10, 15]. Notice that the exceptional collection of section 5.2 has the advantage that it gives back the

right phase of the theory when computing the S−1 quiver adjacency matrix.
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Figure 32: Y 3,2 quiver.

strong exceptionality. Given a line bundle O(D) corresponding to an ample divisor D, then

dim Hq(X,O(D ⊗ K)) = 0 , for any q > 0 . (6.1)

Unfortunately, for us, even in relatively simple exceptional collections, one finds a D which

is not ample even though these higher cohomology groups vanish. To see the vanishing,

one must rely on techniques specific to the complex surface V in question.

We hope the future brings new progress on both these fronts.
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A. The Ψ-map for Y
3,2

To demonstrate the computation of exceptional collections with the Ψ-map of section 5.2,

we give another example. This is the Y 3,2 theory, whose quiver is shown in figure 32.

The brane tiling of this geometry and the 18 perfect matchings are given in figure 33

and figure 34. In the upper left corner of the figures the toric diagram is shown with a red

dot giving the position of the matching. For reference matching we pick the 7th matching

of figure 33. Deleting the corresponding arrows in the quiver gives the Beilinson quiver

(figure 35). We need to fix allowed reference paths in the tiling that connect the first node

of the Beilinson quiver to all the other nodes. The chosen paths are shown in figure 36.
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Figure 33: Y 3,2 perfect matchings (1st . . . 9th).
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Figure 36: Y 3,2 tiling. The purple lines indicate the chosen paths that are used to compute the

exceptional collections. The paths start on face 1 and connect it to the other faces.
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Figure 37: A set of reference paths for Y 3,2.

From the intersection number of the paths and the external perfect matchings we can

immediately derive the following collection:

(0, 0, 0, 0), (1, 0, 0, 0), (0, 0, 1, 0), (1, 1, 0, 0), (1, 1, 1, 0), (1, 1, 2, 0). (A.1)
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